189 research outputs found

    Worldwide phylogeography and history of wheat genetic diversity

    Get PDF
    Since its domestication in the Fertile Crescent ~8000 to 10,000 years ago, wheat has undergone a complex history of spread, adaptation, and selection. To get better insights into the wheat phylogeography and genetic diversity, we describe allele distribution through time using a set of 4506 landraces and cultivars originating from 105 different countries genotyped with a high-density single-nucleotide polymorphism array. Although the genetic structure of landraces is collinear to ancient human migration roads, we observe a reshuffling through time, related to breeding programs, with the appearance of new alleles enriched with structural variations that may be the signature of introgressions from wild relatives after 1960

    Physical mapping integrated with syntenic analysis to characterize the gene space of the long arm of wheat chromosome 1A

    Get PDF
    Background: Bread wheat (Triticum aestivum L.) is one of the most important crops worldwide and its production faces pressing challenges, the solution of which demands genome information. However, the large, highly repetitive hexaploid wheat genome has been considered intractable to standard sequencing approaches. Therefore the International Wheat Genome Sequencing Consortium (IWGSC) proposes to map and sequence the genome on a chromosome-by-chromosome basis. Methodology/Principal Findings: We have constructed a physical map of the long arm of bread wheat chromosome 1A using chromosome-specific BAC libraries by High Information Content Fingerprinting (HICF). Two alternative methods (FPC and LTC) were used to assemble the fingerprints into a high-resolution physical map of the chromosome arm. A total of 365 molecular markers were added to the map, in addition to 1122 putative unique transcripts that were identified by microarray hybridization. The final map consists of 1180 FPC based or 583 LTC based contigs. Conclusions/Significance: The physical map presented here marks an important step forward in mapping of hexaploid bread wheat. The map is orders of magnitude more detailed than previously available maps of this chromosome, and the assignment of over a thousand putative expressed gene sequences to specific map locations will greatly assist future functional studies. This map will be an essential tool for future sequencing of and positional cloning within chromosome 1A

    Evaluation of the genetic variability of homoeologous group 3 SSRs in bread wheat

    No full text
    Thorough characterization of the genetic variability in bread wheat (Triticum aestivum L.) is important for a better improvement of this key crop and to increase cereal yield in the context of sustainable agriculture to face human needs in the next decades. To study the genetic variability of SSRs on wheat homoeologous group 3 chromosomes, we characterized 38 hexaploid and two tetraploid wheat lines using a set of 165 microsatellites that we cytogenetically assigned to the 17 deletion bins for chromosomes group 3.Изучали вариабельность МС-локусов третьей гомеологичной группы хромосом T. aestivum L., осуществили сопоставление изменчивости микросателлитов в дистальных и проксимальных областях хромосом и физическое картирование МС-локусов с помощью делеционных, дителосомных, нуллитетрасомных линий и провели сравнительный анализ вариабельности микросателлитных локусов хромосом 3А, 3B и 3D.Вивчали варіабельність МС-локусів третьої гомеологічної групи хромосом T. aestivum L., здійснили порівняння мінливості мікросателітів у дистальних та проксимальних областях хромосом, а також фізичне картування МС-локусів за допомогою делеційних, дітелосомних, нулітетрасомних ліній та провели порівняльний аналіз варіабельності мікросателітних локусів хромосом 3А, 3B і 3D

    Specific patterns of gene space organisation revealed in wheat by using the combination of barley and wheat genomic resources

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because of its size, allohexaploid nature and high repeat content, the wheat genome has always been perceived as too complex for efficient molecular studies. We recently constructed the first physical map of a wheat chromosome (3B). However gene mapping is still laborious in wheat because of high redundancy between the three homoeologous genomes. In contrast, in the closely related diploid species, barley, numerous gene-based markers have been developed. This study aims at combining the unique genomic resources developed in wheat and barley to decipher the organisation of gene space on wheat chromosome 3B.</p> <p>Results</p> <p>Three dimensional pools of the minimal tiling path of wheat chromosome 3B physical map were hybridised to a barley Agilent 15K expression microarray. This led to the fine mapping of 738 barley orthologous genes on wheat chromosome 3B. In addition, comparative analyses revealed that 68% of the genes identified were syntenic between the wheat chromosome 3B and barley chromosome 3 H and 59% between wheat chromosome 3B and rice chromosome 1, together with some wheat-specific rearrangements. Finally, it indicated an increasing gradient of gene density from the centromere to the telomeres positively correlated with the number of genes clustered in islands on wheat chromosome 3B.</p> <p>Conclusion</p> <p>Our study shows that novel structural genomics resources now available in wheat and barley can be combined efficiently to overcome specific problems of genetic anchoring of physical contigs in wheat and to perform high-resolution comparative analyses with rice for deciphering the organisation of the wheat gene space.</p
    corecore